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Sensors based on optical resonators often have their measurement range limited by their cavity linewidth, particularly in
the measurement of time-varying signals. This paper introduces a method for optical frequency shift detection using multi-
ple harmonics to expand the dynamic range of sensors based on optical resonators. The proposed method expands the
measurement range of optical frequency shift beyond the cavity linewidth while maintaining measurement accuracy. The
theoretical derivation of this method is carried out based on the equation of motion for an optical resonator and the recur-
sive relationship of the Bessel function. Experimental results show that the dynamic range is expanded to 4 times greater
than the conventional first harmonic method while still maintaining accuracy. Furthermore, we present an objective analy-
sis of the correlation between the expansion factor of the method and the linewidth and free spectrum of the optical
resonator.
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1. Introduction

Currently, sensors based on optical resonators are widely used
for electrical[1,2], magnetic[3,4], and inertial[5–7] measurements.
There are two sensing modes for this type of sensor: the first
mode detects the average signal strength in a static way, while
the second senses the dynamic signal in a dynamic way. The
dynamic signal carries a time-dependent signal, while the
dynamic mode detection process skillfully avoids low-frequency
noise. This ability is advantageous for enhancing the signal-to-
noise ratio of sensors based on optical resonators. This detection
method has gained widespread adoption in various fields,
including inertial sensing[8,9], electric[10] and magnetic inten-
sity[11–13] measurement, and others. Sensors based on optical
resonators have two crucial parameters: sensitivity and dynamic
range. To enhance detection sensitivity, optical resonators with
small linewidths are frequently employed. However, the nonlin-
ear nature of the Lorentzian pattern within the resonant cavity
curbs the measurement range. When the optical frequency shift
goes beyond the optical resonator’s linewidth[14–16], the output
of the optical resonant cavity will show distortion, leading
to nonlinear measurement outcomes. As a result, an optical

resonator with a smaller linewidth enhances the detection pre-
cision but also considerably curtails the measurement scope of
the sensor, which restricts the dynamic range.
The Pound–Drever–Hall (PDH) feedback control technique

is commonly used in most experiments to increase the measure-
ment range of the sensors based on optical resonators in static
sensing[17–20]. This method locks the laser frequency to the res-
onant frequency of the optical resonator and uses the error sig-
nal of the feedback as the measurement result. This method can
extend the measurement range limit of static sensing from the
cavity linewidth to the tuning range of the laser. However, In
dynamic sensing, traditional detection methods based on the
first harmonic are still limited by the resonator linewidth[21,22].
Long et al. employed an optical frequency comb to detect the
changes of the center frequency in the optical resonator. This
approach extends the measurement range by approximately
110 times; however, the resolution is reduced by 33 times, result-
ing in a 3.5 times improvement in the dynamic range[23–25]. At
the same time, this method requires a high-precision electro-
optic phasemodulator, additional complexity, and very complex
data processing systems.
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In this paper, we present a detection scheme for resonant fre-
quency shifts in optical resonators that utilizes multiple har-
monics. This method requires no additional equipment for
the existing optical system and extracts frequency shift informa-
tion from various harmonics present in the output signal of the
optical resonator. Additionally, it has the ability to expand the
measurement range of optical frequency shifts beyond the line-
width of the optical resonator, as shown in Fig. 1(b). The multi-
ple harmonics method involves two parts: the first harmonic
method and the first three harmonics method. The former is
implemented when the optical frequency shift falls within the
linewidth of the resonator, while the latter is utilized when it
exceeds that linewidth. The feasibility of the first three harmon-
ics method is theoretically demonstrated through comprehen-
sive analysis. In the experiment, it has been verified that the
application of the multiple harmonics method significantly
extends the measurement range by 4 times compared to the tra-
ditional first harmonic method, while high measurement accu-
racy is maintained. In addition, this study investigates the
maximum expansion factor of the multiple harmonics method.
The limitation of the expansion factor is related to the free spec-
tral range (FSR) of the optical resonator.
Theory: The equation of motion for an optical resonator is

given by Eq. (1)[26],
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where a�t� is the amplitude of the optical field in the optical res-
onator[27], Δ represents the disparity between the resonant fre-
quency of the optical resonator and the laser frequency, G�t�
denotes the sinusoidal dynamic input frequency shift of the opti-
cal resonator, and G�t� = Ω sin�ω0t�, Ω is its amplitude and ω0

is its frequency. Γt indicates the linewidth of the optical resona-
tor, Γex represents the amount of coupled additional loss coef-
ficient, and Ain is the amplitude of the laser.
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Substituting G�t� =Ω sin�ω0t� and integrating, we have
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In this case, the optical resonator is solely modulated by the
incoming sinusoidal dynamic input frequency shift signal. The
power transmitted by the cavity, P�t�, is

P�t� = jAin � i
�������
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p
a�t�j2: (5)

Substituting Eq. (4) into Eq. (5),
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P�t� = PDC � δP�t�, (8)

where PDC is the DC portion of the transmitted power and δP�t�
is the time-varying portion of the transmitted power,
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Utilizing the Bessel function,
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Fig. 1. (a) Output response of the optical resonator when the optical fre-
quency changes within its linewidth; (b) output response of the optical res-
onator when the optical frequency changes beyond its linewidths.
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Substituting Eqs. (10) and (11) into Eq. (9),
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The amplitudes of each harmonic order can be obtained from
Eq. (12). According to the recursive relationship of the Bessel
function,

2nJn�η� = η�Jn�1�η� � Jn−1�η��, (13)

the relationship between the first three harmonics is derived as
follows:
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where P1, P2, and P3 are the amplitudes of the first three har-
monics of the output signal in the optical resonator, respectively.
The resonance frequency shift Ω of the optical resonant cavity
can be explicitly expressed through the subsequent formula,

Ω = −2Γt tan�Φ0�
P2

P1 � P3
: (15)

Substituting Φ0 = arctan�− Δ
Γt=2

� into Eq. (15),

Ω = 4Δ
P2

P1 � P3
: �16�

In our experiments, we obtain the first three harmonics’
amplitude of the output signal of the resonant cavity using
Fourier transform. When the optical frequency shift input in
the resonant cavity is within the measurement range of the first
harmonic method, Ω is calculated using P1. However, when the
optical frequency shift input in the resonant cavity exceeds the
measurement range of the first harmonic method, P1, P2, and P3

are substituted into Eq. (16) to facilitate the calculation of Ω.

2. Experiment

An experimental system is constructed, as depicted in Fig. 2(a).
The tunable laser with a narrow linewidth (RIO) emits 1550 nm
light, which passes through the isolator and attenuator, and is

modulated by the phase modulator with a sinusoidal signal.
The light then enters the fiber ring resonator (FRR). The output
light signal of the FRR is detected by a photodetector, which con-
verts the light signal to an electrical signal. This electrical signal
is demodulated and sideband frequency-locked using a phase-
locked amplifier and a proportional-integral-derivative (PID)
controller, where the error signal of the sideband locking is
fed back into the laser through a feedback loop. The output sig-
nal of the FRR is acquired using an oscilloscope, and the data are
processed in the computer. The FRR utilizes a 99:1 coupler and
is wrapped on PZT for easy control of the optical frequency shift
input. The linewidth of the FRR is 560 kHz, with a quality factor
Q of 3.45 × 108. To ensure that the locking position of the first-
order sideband frequency lies within the linewidth of the FRR,
the sinusoidal modulation frequency is set to 101 kHz. One side-
band is locked to the cavity at the maximum slope point on the
side of the optical resonance, which enhances the sensitivity of
the sensors. Side-locking is achieved with a low bandwidth PID
controller (≈200Hz).
We calibrate the tuning factor of the PZT to optical frequency

shift and evaluate the influence of the sinusoidal signal fre-
quency on those tuning factors, as shown in Fig. 2(b). We apply
a sinusoidal signal with an amplitude of 1 V and frequencies
ranging from 50 to 800 Hz to the PZT. Experimental results
show that the frequency of this sinusoidal signal has little impact
on the tuning factor. The mean value of the tuning factor is
1.97 MHz/V. Since the PDH frequency-locked loop has a band-
width of 200 Hz, we use a sinusoidal signal with a frequency of
300 Hz for the PZT in our experiment. By adjusting the ampli-
tude of this sinusoidal signal applied to the PZT, we dynamically
change the frequency shift input of the FRR. Figure 2(c) displays
the FRR output signal. When the amplitudes of the optical fre-
quency shift are 118 and 197 kHz, which fall within the

Fig. 2. (a) Experimental system of the multiple harmonics method; (b) tuning
factor of PZT to the fiber resonant cavity; (c) output signals of the fiber res-
onant cavity after different optical frequency shift inputs.
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linewidth of the resonant cavity, the output signal remains dis-
tortion-free. There exists a direct proportional relationship
between the amplitude of the first harmonic component of
the output signal and the optical frequency shift. However, when
the optical frequency shifts are 272 and 349 kHz, which surpass
the linewidth, distortion is generated at the output signal. As a
result of this distortion, there is no longer a linear relationship
between the optical frequency shift and the amplitude of the first
harmonic component of the output signal. Therefore, it is not
suitable to use only the first harmonic method for calculating
optical frequency shift in this scenario. According to Eq. (16),
for detecting and calculating the optical frequency shift, the first
three harmonics should be utilized. To acquire the amplitude
of the first three harmonics of the output signal, the output
signal of the FRR is Fourier-transformed, and then the ampli-
tude is used to determine the optical frequency shift according
to Eq. (16).
The experiment demonstrates that the linear range of the first

harmonic method spans from 0 to 197 kHz, which aligns with
theoretical predictions based on the linewidth of the resonant
cavity and the locking point at the first-order sideband.
The optical frequency shift is normalized to the linear measure-
ment range of the first harmonic method (Ω=Ω�1�, that is,
Ω=197 kHz). As shown in Fig. 3(a), with increasing optical fre-
quency shift, there is a gradual increase in the amplitude of the
first harmonic first. Then there is a deceleration in its growth
rate. Finally, there is a gradual decrease. Figures 3(b)–3(e) dem-
onstrate that when the input optical frequency shift is much
lower than the linewidth of the FRR, the amplitude of the
first harmonic increases linearly with the frequency shift.
Additionally, the amplitude of the first harmonic is significantly
greater than that of the second and third harmonics. The latter
two are negligible in comparison to the first harmonic.When the

input optical frequency shift exceeds the linear range of the first
harmonic method, the amplitude of the first harmonic cannot
increase linearly with the increase of frequency shift, whereas
the amplitudes of the second and third harmonics increase rap-
idly. Energy is transferred to higher harmonics with the increase
of the optical frequency shift.
The results calculated by the multiple harmonics method are

shown in Fig. 4. Due to the limitations of the PDH frequency-
locking loop, the optical frequency shift range is between 0 and
800 kHz. Figure 4(a) indicates that the first harmonic method
can linearly measure the optical frequency shift with a linearity
of 0.9964 when the frequency shift remains below 197 kHz.
Above 197 kHz, the error gradually increases between the mea-
surement results and the input frequency shift. This experimen-
tal observation is consistent with the theoretical analysis.
Figure 4(b) shows that when the optical frequency shift is
between 197 and 800 kHz and the multiple harmonic method
is implemented, the frequency shift calculated by the first three
harmonics method aligns with the input frequency shift of the
FRR. The linearity is 0.9942. This study demonstrates that the
multiple harmonic method can significantly expand the mea-
surement range of optical frequency shift. By extending themea-
surement range to 4 times that of the first harmonic method, we
have validated the effectiveness of the multiple harmonics
method in expanding the measurement range.
During the experiment, the resolution of the first harmonic

method and multiple harmonics method is assessed in their
respective test ranges. The input optical frequency shift is con-
trolled at 1, 2, 3, 4, 5, and 6 kHz. Seven to ten sets of data points
are tested at each frequency interval. In these sets of experi-
ments, the experimental results are nonlinear when the test
interval is less than 4 kHz, indicating that the first harmonic
method and themultiple harmonics method are unable to detect

Fig. 3. (a) Variation of the first harmonic amplitude with gradually increasing
optical frequency shift input, whereΩ(1) = 197 kHz; amplitude of the first three
harmonics after Fourier transform of the output signals with optical fre-
quency shift of (b) 118 kHz; (c) 198 kHz; (d) 354 kHz; (e) 512 kHz.

Fig. 4. (a) Experimental result of the first harmonic method; (b) experimental
result of the multiple harmonics method; (c) resolution test of the first har-
monic method in its linear range; (d) resolution test of the multiple harmonics
method in its linear range.
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optical frequency shifts up to 4 kHz. However, when the test
interval is greater than or equal to 4 kHz, the experimental
results are linear, indicating that the first harmonic method
and the multiple harmonics method can effectively discriminate
optical frequency shifts greater than or equal to 4 kHz. As can be
seen in Figs. 4(c) and 4(d), both the first harmonic method and
multiple harmonics method have a minimum resolution of
4 kHz. This confirms that the multiple harmonics method
expands the range ofmeasurements while maintaining accuracy.
The goal of broadening the dynamic range for measurement of
the input optical frequency shift is accomplished.

3. Limits of the Multiple Harmonics Method

In our experiments, we expand the dynamic range to four times
by multiple harmonics method compared with the first har-
monicmethod. However, this is not the limit of themultiple har-
monics method. The experimental result of four times is limited
by the feedback circuit of the experimental system. In our exper-
imental system, when the optical frequency shift is excessive,
PDH sideband locking for the FRR will be disabled, and the out-
put signal of the optical resonator cannot be obtained.
Therefore, we investigate the limitations of the multiple har-
monics method and its potential to increase dynamic range in
theory.
In this study, we introduce the concept of the expansion fac-

tor, which is defined as the ratio between the linear measure-
ment range of the multiple harmonics method and the linear
measurement range of the first harmonic method. As show in
Fig. 5(a), for a 15-m fiber-resonant cavity in our experiment,
the theoretical expansion factor is 58, greatly exceeding the line-
width of the resonant cavity. Meanwhile, the effect of linewidth
and FSR on the expansion factor of the multiple harmonics
method is analyzed. The results demonstrate that the linewidth
variation has a small impact on the expansion factor when the
FSR is fixed. Then we investigated the impact of FSR on the
expansion factor of the multiple harmonics method by fixing
its intracavity loss and varying the length of FRR. The result
indicates that the FSR has a significant impact on the expansion

factor. When the linewidth is fixed, a larger FSR means a larger
expansion factor. This provides a reference for the selection on
the parameters of the optical resonator according to the require-
ments of the expansion factor.

4. Conclusion

In this paper, we propose and assess the technique for expanding
the dynamic range of optical frequency shift detection that relies
on multiple harmonics. Our analysis combines theoretical and
experimental approaches. We integral and calculate the equa-
tions of motion for the optical field within the resonant cavity.
Then the equations of the time-varying optical power are
obtained. This confirms the feasibility of the multiple harmonics
method in theory. Experimental results show that the multiple
harmonics method expands the measurement range of the opti-
cal frequency shift beyond its linewidth, with an expansion fac-
tor of four times compared with the first harmonic method.
Moreover, the multiple harmonics method maintains measure-
ment accuracy of 4 kHz, which is equivalent to that of the first
harmonic method. The theoretical limits of the multiple har-
monics method have been studied. It is found that expansion
factor is closely related to the FSR of the optical resonator.
An optical resonator with a large FSR can realize a large expan-
sion factor. Without introducing any optical devices, the multi-
ple harmonics method is demonstrated as a simple and cost-
effective approach that provides high measurement accuracy
and large measurement range for the dynamic signals at the
same time.
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